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The aim of this research is to perform topology and sizing optimization of wing-box structures using curvilinear

spars and ribs, referred to as SpaRibs in the following. To accomplish this, a new framework calledEBF3SSWingOpt

is being developed at Virginia Polytechnic Institute and State University. The optimization framework includes two

different methodologies: a one-step optimization methodology where topology and sizing optimization are carried

out together and a two-step optimization methodology where topology and sizing optimization are carried out

separately using different constraints and objective functions. A description of how the general framework is

developed and applied for optimizing winglike structures is provided and the optimization-problem formulation is

stated. Two practical design problems solved using EBF3SSWingOpt are presented: a rectangular wing box and a

generic fighter wing. In both cases, the structure with the SpaRibs is lighter than the initial structure with straight

spars and ribs.Moreover, the two-step optimization framework has proven to be better atfinding anoptimal solution

than the one-step framework. Finally, different designs with comparable weights but different stress distributions,

buckling properties, and dynamic behaviors were found.

Nomenclature

Ai = ith finite element area
BF0 = buckling factor
EBF3 = electron beam free-form fabrication
f�x� = optimization objective function
gi�x� = ith optimization constraint function
KSC� = Kreisselmeier–Steinhauser stress coefficient
niter = number of iterations
P = applied load
Pcr = critical buckling load
SF = safety factor
TCPU = CPU time
W = weight
WMAX = maximum weight
x = design-variable vector
xjMAX = jth design-variable upper boundary
xjmin = jth design-variable lower boundary
�0 = fundamental buckling eigenvalue
� = Kreisselmeier–Steinhauser constant
�i = ith finite element von Mises stress
�u = ultimate tension stress
�VM = von Mises stress
�y = yield stress of the material

I. Introduction

T HE present work is motivated by the fact that to enhance
structural performance in aerospace field, new design concepts

for aircraft structures are needed. Two aspects are of particular

interest for industry and manufacturing: bring design optimization
and high-fidelity analysis in the early stages of design and bring
together asmanydisciplines as possible. The quest for the best design
is dictated by many constraints related to environmental issues,
manufacturing time and cost, maintenance cost, and operational cost,
which have to be added to the typical structural integrity and safety
constraints. As a consequence, nowadays, engineers are challenged
to take into account all these aspects during the early stages of
concept design, and they need new analysis tools to accomplish this
complex task.

The biggest limitation in classic structural design is the use of very
simple components as straight spars and ribs, quadrilateral panels,
uniform-thickness stiffeners, and stringers. Moreover, all these
structural elements have to be connected using bolts and rivets or by
welding,which are time- andmoney-consuming processes. Thus, the
trend in the industry is toward designing structures with fewer
components, but more efficiently. This philosophy leads to the
development of the so-called unitized structures, characterized by
the integration of the stiffening members to the rest of the structure
achieving a monolithic construction of the vehicle [1]. The
advantages of the use of unitized structure [2] over classical designed
structures are multiple and can be identified as follows: 1) reduced
part count, manufacturing time, and fabrication cost; 2) increased
design flexibility; 3) weight savings; 4) increased resistance to
fatigue and corrosion; 5) enhanced automation; and 6) improved
ergonomics and reduced work.

The benefits of unitized structures are so overpowering that
experts expect an exponential increase in the use of this kind of
structure in the aeronautics and aerospace design by 2020 [1]. Major
aircraft manufacturer companies lead this revolution in structural
design approach. In particular, Boeing already has developed a new
integrally stiffened fuselage concept whose testing demonstrated
structural performance and efficiency similar to those of conven-
tional design, while achieving significant manufacturing time and
cost reduction [3]. The manufacturing of unitized structures is
directly linked to the development of new innovative manufacturing
techniques as rapid manufacturing, rapid prototyping, solid free-
form fabrication, and additive manufacturing [4,5]. Friction stir
welding [6] and electron beam free-form fabrication (EBF3) [7–9]
are among the most promising manufacturing techniques that can be
used to produce metallic unitized structures for the aeronautics
industry. Furthermore, these techniques enable the manufacturing of
integrated curvilinear stiffening members with negligible additional
cost and time with respect to conventional processes. This aspect is
crucial for the optimization of the airframe components, since
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topology optimization methods lead often to curved designs [10].
The use of curved stiffening members broadens the design space and
provides variable stiffness, enabling a more efficient structural and
material tailoring. The concept of variable stiffness is not new in
aeronautical design. In fact, nonuniformly stiffened structures have
been used in the construction of airframes since the dawn of aero-
space history. Straight stiffeners are commonly used to provide
panels with additional stiffness along the direction of the acting loads
[11]. Moreover, the stiffeners can be placed at different orientations
to alignwith the stress flow in the structure and to provide an efficient
load-bearing mechanism. Use of multiple stiffeners is also advan-
tageous, since it provides redundancy and efficiently stops the
growth of cracks in the supporting substructure [11]. A further im-
provement in airframe panel design is represented by the introduction
of geodesically stiffened panels, whose optimization and structural
response was widely studied by Gürdal and Gendron [12], Gürdal
and Grall [13], Gendron and Gürdal [14], and Grall and Gürdal [15].
Isogrid [16] and grid-stiffened [17,18] panels are also commonly
used in aircraft design for their efficiency in load-carrying capability
and buckling behavior [19].

The broad use of compositematerials is alsomotivated by the need
for nonuniformly stiffened structures. Hence, the composites have
always been an integral part of aircraft structural layout, from the
wood ply composite materials introduced in the 1920s [20] to the
most advanced nonuniformly distributed curved fibers and matrix
composites used for differential stiffening of fuselage structures [21].

The variable-stiffness approach is also applied globally to the
construction of the complete wing structure. Generally, in this case,
the stiffness of the wing is controlled using actuators. Studies from
Chen et al. [22] and Onoda et al. [23], have shown the advantage of
variable-stiffness spars and trusses in improving the flight quality,
controlling the vibrations, and providing stress relief to the structure.
However, the use of actuators to modify the stiffness can lead to
increased structural weight and complicated design solutions for the
actuator–structure integration. Hence, the use of curvilinear spars
and ribs or SpaRibs (see Fig. 1) can combine the advantages of the
variable-stiffness design concept while avoiding the problems of the
use of actuators. Furthermore, these two approaches are funda-
mentally different; the first approach falls under the active structure
control category and its purpose is to ameliorate the structural per-
formance at certain flight conditions; on the other hand, the SpaRibs
provide passive control of the structure and aim to improve the per-
formance across the whole flight envelope. Kobayashi et al. [24,25]
and Kolonay and Kobayashi [26] have shown how curvilinear
internal structures resulting from the topology optimization using the
cellular-division approach are beneficial for the multidisciplinary
optimization of air vehicles.

Curved beams behave very differently from conventional straight
beams used for the structural layout ofwing boxes. Love [27] demon-
strated that both axial and torsional deformations are coupled with
bending for curved beams of arbitrary shape and derived the
governing equations. The advantages of using SpaRibs in the wing-
box layout reside exactly in the coupling between bending and

torsion that characterizes curved beams and can be described as
follows:

1) Torsional deformation of thewing due to the aerodynamic loads
can be counteracted by suitably placing SpaRibs with the additional
effect of relieving the shear stresses in the skin panels by reducing the
torsional deformation itself.

2) Natural frequencies and mode shapes can be controlled.
3) Structural coupling between bending and torsion can be

exploited to passively control the flutter mechanism.
4) Increased stiffness achieved with SpaRibs allows design airfoil

cross sections to be designed with reduced thickness-to-chord ratio,
decreasing the drag and the boom signature.

5) There is reduced airframe weight for the same performance.
In conclusion, the introduction of unitized structures concept, the

availability of innovative manufacturing techniques such as EBF3,
and the curved designs resulting from topology optimization require
the development of tools that are able to analyze and optimize
airframes with curvilinear SpaRibs.

The problem approached by this research is the optimization of a
wing-box-like structure using curvilinear SpaRibs instead of using
the classic design concept of straight spars and ribs. In particular, the
minimum-weight design has been studied under stress and buckling
constraints. The external shape of the wing box is fixed and the
aerodynamic loads used in the study cases are simple estimates of the
realflight loads. The internal structure is placed byEBF3SSWingOpt
according to the design-variable vector, and the structural analysis is
preformed by MD Nastran. Finally, the weight of the optimized
structure is compared with the weight of a baseline structure with
straight internal elements to study the potential advantage of the use
of the SpaRibs in fabricating lighter aircraft structures.

Section II describes in detail the framework developed for the
optimization. In particular, a one-step approach and a two-step
approach to the optimization are presented. In Sec. III the param-
eterization of the SpaRibs is described. Section IV shows the formu-
lation of the optimization problem. In particular, the formulation of
the response functions is stated and a list of design variables is given.
Section V presents the results of the application of the optimization
framework. At first, a parametric study is performed to characterize
the behavior of the response functions in the design space. Subse-
quently, the optimization using SpaRibs is applied to a rectangular
wing box. Finally, the process is used to optimize a generic fighter
wing structure. The one-step and two-step optimization perform-
ances are also compared.

II. Global Optimization Framework

The methodology developed to carry out the weight optimization
of any aerospace structure has to take into account all the different
aspects and disciplines involved in the design, such as stresses in the
structure, buckling phenomena, vibrational modes interaction, aero-
dynamics and structure interaction, thermal loads, and robustness of
the design and reliability (see Fig. 2). This study focuses only on
static stress analysis and buckling, excluding the rest of the
disciplines from the optimization process. A multidisciplinary opti-
mization framework that involves topology optimization requires the
capability to update the geometry and finite element (FE) model at
every iteration. Hence, the following steps define the general opti-
mization algorithm for the single iteration:

1) The optimizer checks convergence of the design and eventually
computes a new design-variable (DV) vector.

2) Geometry and structural FE model are updated accordingly to
the new DV vector.

3) Structural static and buckling analyses of the updated FEmodel
are performed.

4) FE analysis results are retrieved and response functions are
built.

5) Response functions are fed back to the optimizer.
To accomplish these tasks, a framework capable of linking and

coordinating different commercially available software has been
developed. In Fig. 3, the global schema is presented; the MATLAB-
based [28] EBF3SSWingOpt code is used to link together the

Fig. 1 Supersonic wing internal structure FEmodel showing the use of

curvilinear spars and ribs or SpaRibs to improve the design.
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optimizer, VisualDOC [29], and the analysis software. The user sets
the optimization problem by building a VisualDOC database
(including the objective and constraints functions, the DV vector and
the side constraints, and the starting design point) and by selecting
the most suitable optimization method to use: namely, the gradient-
based methods, the response-surface-based methods, the genetic
algorithm (GA) method, and the particle swarm optimization (PSO)
method. Once the VisualDOC database is correctly completed, an
optimization task is launched by the user via MATLAB; from this
moment on, the optimization is completely automatic and does not
require any additional input from the user. The automatic process
starts with VisualDOC supplying the DV vector to EBF3SSWin-
gOpt, which uses these data to generate an MD Patran [30] input
session file; MD Patran reads the input session file and generates the
geometry, the mesh, and theMDNastran [31] input file. This process
ensures the consistency between the geometry and the mesh for the
computation of the right responses. MD Nastran performs static
stress analysis, buckling, and modal analyses of the structure and

writes all the results in an output file that is scanned by
EBF3SSWingOpt to retrieve the objective functions values, for the
design point considered, and feeds them back to VisualDOC. If the
objective function is converged and the constraints functions are
satisfied, the optimization is completed and a file including the best
design and the history of the optimization DV vector and response
functions is printed out; otherwise, VisualDOC provides
EBF3SSWingOpt with a new DV vector and the cycle starts again.
There are cases where the analysis cannot be completed for different
reasons, the most common of which is the failure to build a correct
mesh byMD Patran on very complex geometries. In these cases, it is
impossible to retrieve the values of the response functions; hence, the
particular design point is automatically excluded from the opti-
mization and a warning message is printed out in the results file.

A global optimization framework, such as the one we have
developed thus far, includes two main optimization problems; the
sizing optimization of each structural component and the topology
optimization of the structure. The topology optimization addresses
issues such as howmany components andwhat shape theymust have
to reach the best design. Obviously, sizing and topology optimization
are coupled together; in other words, changing the size of the
components of the structure leads also to a change in the topology
and vice versa. Therefore, the complexity of this problem is greater
than the complexity of a simple sizing optimization problem.
However, optimizing both the size and the topology of the structure is
of enormous advantage to the designer, since that provides a much
wider design space and multiple design solutions that are equally
advantageous with respect to the weight reduction, but that differ
from each other in terms of the stresses and deformations distribution
or the buckling behavior or the mode shapes and natural frequencies.

The natural approach to solve the problem is to address sizing and
topology optimization at the same time and to solve the coupled
problem, using what we called one-step optimization [32]. However,
in an attempt to improve the efficiency of our framework, we also
developed a two-step optimization [33–35], in which the two
problems are solved in an uncoupled but an iterative manner. These
two methodologies are described in the following.

A. One-Step Optimization

In the one-step optimization methodology, both the size and the
topology optimization problems are solved as one problem in each

Fig. 2 General multidisciplinary design optimization scheme. The optimizer receives the responses from various disciplines and subdisciplines and

computes the optimum topology and size of the structure. The SpaRibs enlarge the design space size.

Fig. 3 Block diagram of the optimization scheme; the dashed line

encloses the functionalities of EBF3SSWingOpt.
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iteration according to the general scheme presented in Fig. 3. The
weight of the structure isminimized subject to the stress and buckling
constraints, as shown in Table 1. Performing an optimization using
this method can require extensive CPU time, due to the large number
of design variables; however, it has the advantage that the user has to
build just one VisualDOC database and there is no need to iterate
between sizing and shape optimization to achieve the convergence of
the objective function.

B. Two-Step Optimization

In the two-step optimization methodology, the size and the
topology optimization problems are solved as uncoupled problems in
two different steps in which the objective function is chosen properly
and does not have to be the same for the sizing and the topology
problems. For an optimization problem, where the weight, the
buckling factor, and the stresses are considered as response func-
tions, the two-step optimization scheme is presented in Fig. 4. The
DV vector is split into two vectors: one vector consists of all the DVs
related to the sizing problem and the other vector is where all theDVs
related to the topology problem are grouped. The user has to make a
choice of which design variable belongs to which problem based on
his/her experience and judgment. Two VisualDOC database are
created: one for optimizing the size of the elements and one for
optimizing their topology. At this point, it is clear that the FE model
must be regenerated only for the topology step of the optimization,
which works exactly following the scheme in Fig. 3, with the
advantage that now the DVs are less in number than if the coupled
problem was solved, achieving a faster convergence to the optimum
solution of the topology problem. Since the sizing step of the
optimization does not require that the FE model is updated at every

iteration, EBF3SSWingOpt can be used only to update the thick-
nesses of the structural components, without the need to go through
the geometry generation and the geometry remeshing phases,
therefore also greatly improving the efficiency for this step. The
disadvantage of this method is that to achieve the global convergence
of the optimum design, these two steps have to be executed
iteratively. However, convergence is usually obtained after two or
three iterations of each step. Results will be presented in Sec. V,
which will show the comparison of the achievements obtained using
these two methodologies and will prove that the two-step opti-
mization is slightly more efficient than the one-step optimization.

It is important to emphasize that the optimization problems related
to each step have to be carefully formulated to reach a feasible
optimum design. Tables 2 and 3 show the appropriate formulation
used to solve an optimization where the weight, the buckling factor,
and the stresses are used as responses.

In the topology optimization step, the optimizer looks for the
stiffest configuration possible, whereas the weight and the stresses
cannot exceed a given value, and the thicknesses of each component
of the structure are constant. Instead, in the size optimization step, the
optimizer looks for the lightest configuration possible, whereas the

Fig. 4 Two-step optimization block diagram.The optimization starts with the baseline design. The first step is the topology optimization that follows the

global scheme presented in Fig. 3. Once the best topology is computed, the design is fed to the second step. In the sizing phase, the thickness of each

component is optimized without changing the shape of the structure, The two steps can be iterated until convergence of the design is reached.

Table 1 One-step optimization response functions

Responsea Description

Objective function MinimumW, lb
Constraint BF0 < 1
Constraint KSC� < 1

aThe objective function is the weight of the structure; the
constraints are the buckling factor and the KS coefficient for the
von Mises stresses.

Table 2 Two-step optimization response

functions description for the topology

optimization

Response Description

Objective function Minimum BF0

Constraint W=WMAX � 1
Constraint KSC� < 1

Table 3 Two-step optimization response

functions description for the size
optimization

Response Description

Objective function MinimumW, lb
Constraint BF0 < 1
Constraint �VM=�y < 1
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buckling factor has to be smaller than 1, the von Mises stresses is
lower than the yield stress of the material, and the topology of the
structure is fixed.

III. Wing Parametric Geometry Generation

In Sec. II, the general optimization approach was presented. It is
important to understand that the global schema is applicable to any
type of structure and, in principle, could include any type of response
functions and constraints provided by specific disciplines related to
the design. In the following section, the application of the global
schema to the design of winglike structures is described. The
peculiarity of these kinds of structures is the use of three types of
components that are different for their design and load-carrying
functions. The components are the skin panels, the spars, and the ribs.
To carry out an optimization process that involves topology opti-
mization, a geometry parameterization of the structural components
is needed. The parameters chosen to describe the geometry of the
structural elements will be used as topology-related DVs.

There are multiple equivalent ways to parameterize the geometry
of the structure according to different user requirements. In this case,
the wing planform and the airfoil cross section are fixed during the
optimization, whereas the shape of spars and ribs is changing; hence,

for our purposes, only the parameterization of the internal structural
components was needed. Our choicewas mainly dictated by how the
geometry is generated inMDPatran; as a consequence, it was natural
to choose the B-spline utility of MD Patran to parametrize the shape
of the SpaRibs. Figure 5 shows how the SpaRibs are generated using
B-splines and the concepts of base curves and bounding box [36].

Base curves are generated interpolating three points, indicated in
Fig. 5, as the start point, the control point, and the endpoint, withMD
Patran B-spline utility. The start- and endpoints of each base curve
are always located on two opposite edges of the bounding box, a
rectangle whose dimensions are constant and provided by the user,
enclosing the projection of thewing planform on theX–Y plane. The
SpaRibs are then generated translating each of the base curves in X
and Y directions, respectively, as displayed in Fig. 6.

This formulation allows the reduction from six to four parameters
to describe each base curve. To generate a B-spline curve, the user
should provide the coordinates of the start, the control, and the
endpoints corresponding to six geometric parameters for a single
curve. In Fig. 7, we present an example of a wing for which the
geometry was generated as described above.

IV. Optimization-Problem Formulation

The optimization-problem statement is described mathematically
by Eq. (1), where f�x� is the objective function, gi�x� are the n
response constraints, xjmin and xjMAX are the side constraints for each
of the m DVs, and x is the DV vector:

min
x
f�x� gi�x� � 1 i� 1; . . . ; n

xjmin � xj � xjmax j� 1; . . . ; m (1)

The response functions and each DV are supposed to be
continuous in the space enclosed by their related constraints.

A. Response Functions

The response functions are defined by the values assumed by the
variables calculated at each step of the analysis. The same response
function can be characterized as objective function, as constraint
function, or both, depending on the formulation of the optimization
problem. In this particular case, the response functions are related to
structural parameters that define the general performance of the
structure and are defined as follows: wing weightW, wing buckling
factor BF0, Kreisselmeier–Steinhauser stress coefficient KSC� , and
maximum von Mises stress �VM.

These response functions can be used as objectives or as
constraints, depending upon the problem statement, as described in
Tables 1–3.

Although the weight of the structure, W, is directly given in the
MD Nastran analysis output file, the rest of the response functions
have to be computed using data contained in the same result file.

The wing buckling factor BF0 is calculated according to Eq. (2):

BF 0 �
1

�0
(2)

The fundamental buckling eigenvalue �0 is obtained from the SOL
105 sequence in MD Nastran and defines the static instability

Fig. 5 Geometry parameterization using B-splines and the concepts of

base curves and bounding box. The base curves are modeled as third-

order B-splines. The start- and endpoints of the curves are constrained to
lay on two opposite edges of the bounding box. The control points lay

within the bounding box.

Fig. 6 Topology DVs for SpaRibs shape and placing optimization.

DVSR1;1 is the Y coordinate of the start point of the first base curve;

DVSR1;2 is the Y coordinate of the endpoint;DVSR1;3 andDVSR1;4 are the

X and Y coordinates of the control point, respectively; DVSR1;5 is the

distance between two SpaRibs.DVSR2;1,DVSR2;2,DVSR2;3,DVSR2;4, and

DVSR2;5 have similar significance, but they refer to the secondbase curve.

Fig. 7 Wing mesh generated by EBF3SSWingOpt using base curves

and bounding-box method to parameterize the SpaRibs geometry.
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behavior of the structure. The critical buckling load Pcr is defined in
Eq. (3), where P is the applied load:

Pcr � �0P (3)

It is clear that if �0 � 1, thenPcr � P, meaning that the structure is
statically stable under the applied load system. Hence, the mathe-
matical formulation of the buckling constraint can be written as in
Eqs. (4) and (5). Note that in Eq. (5), a safety factor (SF) has been
taken into account:

1

�0
� 1 (4)

SF

�0
� 1 (5)

The Kreisselmeier–Steinhauser [37] stress coefficient KSC�
defines an aggregated von Mises stress parameter for all elements in
the FE model and is computed using Eq. (6):

KSC ���� �
1

�
ln
�

1P
N
i�1 Ai

XN
i�1

e
�
�i
�y

�
(6)

Here,Ai is the area of the ith element, �i is the vonMises stress in the
ith element, �y is the yield stress of the material, and � is a constant
whosevalue determines the behavior of the constraint. A lowvalue of
� tends to average the stresses smoothening the constraint; on the
contrary, a high value of� drives the constraint to itsmaximumvalue.
In this case, a rather high value of 150 was used for �.

The maximum von Mises stress is calculated as

�VM �max
i
��i� (7)

Note that �i is the von Mises stress computed by MD Nastran in the
ith finite element. If the maximum von Mises stress �VM is smaller
than thematerial yield stress �y, then the static stress constraint is met
and can be formulated as in Eqs. (8) and (9), whereas in Eq. (9), a
safety factor has been introduced:

�VM
�y
� 1 (8)

�VMSF

�y
� 1 (9)

B. Design Variables

The type and the number of design variables of the optimization
are directly related to the parameterization of the geometry of the

structure. With the current parameterization method, described in
Sec. III and presented in Fig. 6, a total of 10 design variables are
needed to allow the topology of the SpaRibs to change. At least
another four design variables are needed for the thicknesses of the
structure. Table 4 details these 14 design variables used to solve this
optimization problem. The side constraints for the sizing variables
are given by the manufacturing capabilities. The minimum thickness
value is an important constraint, since the thinner the structure is, the
better it is from a weight point of view. The SpaRibs control-point
coordinates are limited by the dimensions of the bounding box [36],
and the design variables that define the distance between two
SpaRibs have to be greater than zero.

V. Results

In this section, results for two cases are presented. Thefirst case is a
rectangular wing box that is optimized using bigrid and curvilinear
SpaRibs, respectively. The second case is a generic supersonicfighter
wing optimized using curvilinear SpaRibs. Particle swarm opti-
mization [36,38,39] is used to carry out the optimization analysis.
This method was chosen to avoid, as much as possible, local minima
regions in the design space.

A. Rectangular Wing Box

This case was chosen as a test case to evaluate the aforementioned
optimization framework and to prove the advantage of using
curvilinear SpaRibs for designing wing structures. Thewing box is a
rectangular with constant thickness of 0.8 in., a semispan of 15 in.,
and an airfoil chord of 30 in.

The baselinewing was provided by LockheedMartin Aeronautics
Company and is characterized by an internal structure with six spars
and two ribs (Fig. 8). The material is aluminum alloy 2124-T851, for
which the properties are given in Table 5.

A pressure distribution linearly varying over the chord length, also
provided by Lockheed Martin Aeronautics Company, is used as the
load case. At the leading edge (x� 0 in:), P� 2:027 psi. At the
trailing edge (x� 30 in:), P� 4:480 psi. A parametric study was
performed before proceeding to the optimization to have an idea of
the variation of the response functions. The weight, buckling factor,
and Kreisselmeier–Steinhauser stress coefficient were computed for
the rectangular wing with straight spars and ribs. The value of the
distance between two spars was changed for each analysis, whereas
the rest of the values of the DVs were kept constant (see Table 6).

In Figs. 9–11, we present the results of the parametric study. The
weightW response seems to be well-behaved, as compared with the
BF0 and the KSC� responses. As the distance between the spars
increases, the weight of the wing decreases, since fewer and fewer
spars are included in the wing box. The steplike trend of the weight
response is due to the fact that increasing the distance pushes the
spars out of the wing box one at a time. Each step in the function
corresponds to the change in the number of spars in the wing. The
behaviors of theBF0 and theKSC� responses are more erratic, with a
large number of peaks and valleys, although the general trend of both
functions is to increase their values as the distance increases.

Table 4 Optimization design variables

Design variable Description

Upper-skin thickness, in. Sizing variable
Lower-skin thickness, in. Sizing variable
Spar thickness, in. Sizing variable
Rib thickness, in. Sizing variable
Spar start-point x coordinate, in. Topology variable
Spar control-point x coordinate, in. Topology variable
Spar control-point y coordinate, in. Topology variable
Spar endpoint x coordinate, in. Topology variable
Spar distance, in. Topology variable
Rib start-point y coordinate, in. Topology variable
Rib control-point x coordinate, in. Topology variable
Rib control-point y coordinate, in. Topology variable
Rib endpoint y coordinate, in. Topology variable
Rib distance, in. Topology variable Fig. 8 Baseline rectangular wing-box geometry. The internal structure

counts six straight spars and two straight ribs.
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A similar study was done changing the orientation of the spars and
keeping the rest of the DVs constant, showing similar discontinuous
behavior of the responses. Therefore, we can conclude that the
response functions for this particular problem are very sensitive to
small changes in the topology DVs; in particular, the BF0 and the
KSC� functions display this kind of behavior. This could generate
problems for the optimizer, especially if gradient-based methods or
sensitivity-based methods are used to evaluate the response
functions.

1. Rectangular Wing Box with Bigrid

Before approaching the more complex problem of optimizing the
structure using SpaRibs, we solved a much simpler problem of
optimizing the rectangular wing box with a bigridlike internal
configuration. With this approach, the spars and ribs are considered

as straight structures with fixed orientation, and they are orthogonal
to each other. The geometry update and remeshing of the FE model
are less complex than for the case of curvilinear spars and ribs. This
problem can be seen as the optimization problem described in
Sec. IV, but with a reduced number of DVs. Indeed, only the
thicknesses of the structural elements and the distances between
spars and ribs are changed, whereas the rest of the DVs are kept
constant.

Twodifferent sets of results are presented below. Thefirst set refers
to a configuration where the spars and ribs are uniformly distributed;
in other words, the distance between any two spars next to each other

Table 5 Aluminum alloy 2124 T851

mechanical properties

Property Value

Young’s modulus E 10.6 Msi
Poisson’s ratio � 0.33
Density � 0:101 lb=in:3

Yield stress �y 64 ksi
Ultimate tension stress �u 70 ksi

Table 6 Values assumed by the design variables

during the parametric studya

Design variable Value

Upper-skin thickness, in. 0.2 (fixed)
Lower-skin thickness, in. 0.2 (fixed)
Spar thickness, in. 0.2 (fixed)
Rib thickness, in. 0.2 (fixed)
Spar start-point x coordinate, in. 2.5 (fixed)
Spar control-point x coordinate, in. 2.5 (fixed)
Spar control-point y coordinate, in. 7.5 (fixed)
Spar endpoint x coordinate, in. 2.5 (fixed)
Spar distance, in. Changing
Rib start-point y coordinate, in. 1.85 (fixed)
Rib control-point x coordinate, in. 15 (fixed)
Rib control-point y coordinate, in. 1.85 (fixed)
Rib endpoint y coordinate, in. 1.85 (fixed)
Rib distance, in. 11.3

aAll variables are constant except for the distance between the
spars.

Fig. 9 Wing weight variation for changing in the distance between

spars.

Fig. 10 Wing buckling-factor variation for changing in the distance

between spars.

Fig. 11 Wing Kreisselmeier–Steinhauser stress coefficient variation

for changing in the distance between spars.

Table 7 Bigrid optimization of the rectangular wing box

using uniformly spaced spars and ribsa

No. spars

No. ribs 2 3 4 5 6 7 8 10 12

2 5.61 5.13 4.44 4.12 4.03 4.06 3.82 3.54 3.43b

3 5.56 5.01 4.35 4.35 4.16 3.96 3.95 3.61 3.48
4 5.24 4.61 4.58 4.47 4.26 4.11 3.93 3.78 3.77

aThe weight of the structure is optimized for configurations with different numbers
of spars and ribs. The best results are obtained with 12 spars and two ribs. The
weight is in pounds.
bIndicates the lighter structure.
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is the same. The results are visualized in Table 7 and in Fig. 12. The
second set of results refers to a configuration where the spars and ribs
are nonuniformly distributed. An additional DV is introduced to
define a nonuniform spacing; see Table 8 and Fig. 13 for the detailed
results.

For the uniformly distributed spars and ribs problem, the optimum
result is obtained for the configuration with 12 spars and two ribs, as
opposed to the optimum configuration with 12 spars and three ribs
obtained with nonuniform distribution. As shown in Figs. 12 and 13,
configurations with less spars and ribs are worse in terms of the

weight. However, if the number of spars and ribs is fixed by the
designer, it is possible to improve these designs, proceeding to a local
panel optimization, as described in Mulani et al. [36]. A description
of a collaborative global–local optimization is beyond the scope of
this paper; nevertheless, it is possible to combine the two aspects to
improve the structure performance.

The designs with a large number of spars and ribs are more
advantageous. The explanation of this phenomenon is related to the
driving constraint of the optimization problem. Analyzing the results
of several optimization cycles, we noticed that the driving constraint
is always the BF0. In other words, the wing will fail because the
buckling constraint is violated long before the stress constraint
becomes active. Thismeans that if wewant to improve the design, we
need to improve the buckling properties of the structure. Ultimately,
the global static instability is due to the buckling of the skin local
panels; therefore, if the load is fixed, it is possible to design stiffer yet
thinner panels, thus reducing their dimensions. Adding spars and ribs
produces exactly this effect on the structure. The local panels are
smaller; hence, they can sustain the same load without buckling and
with reduced thickness. This process is a tradeoff between theweight
gained because of the additional spars and ribs and the weight lost
because of the decreased skin thickness. When the optimum
configuration of spars and ribs is reached, increasing the number of
internal elements becomes disadvantageous, since the weight gain

Fig. 12 Weight optimization of rectangular wing box using uniformly spaced bigrid.

Table 8 Bigrid optimization of the rectangular wing box

using nonuniformly spaced spars and ribsa

No. spars

No. ribs 2 3 4 5 6 7 8 10 12

2 5.79 4.95 4.59 4.20 3.86 3.73 3.57 3.45 3.60
3 5.16 4.49 4.50 3.97 3.90 3.78 3.75 3.58 3.34b

4 4.95 4.22 3.83 3.60 3.66 3.53 3.58 3.39 3.47

aThe weight of the structure is optimized for configurations with different numbers
of spars and ribs. The best results are obtained with 12 spars and three ribs. The
weight is in pounds.
bIndicates the lighter structure.

Fig. 13 Weight optimization of rectangular wing box using nonuniformly spaced bigrid.
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due to the added structural component is not compensated by the
weight reduction due to the reduced skin thickness, leading to an
overall weight increase.

In Table 9, the thickness of the structure is shown for both optimum
bigrid configurations found. The minimummanufacturing thickness
of 0.015 in. is reached in almost every part of the skin.

2. Rectangular Wing Box with Curvilinear SpaRibs

The optimization of the rectangular wing box using uniformly and
nonuniformly spaced bigrid is the first step toward the imple-
mentation of curvilinear SpaRibs. In this section, three sets of
optimization resultswith SpaRibs are presented. Thefirst two sets are

obtained with the one-step optimization framework, and the third set
is obtained by applying the two-step optimization framework.

In Tables 10 and 11, we present the DV vectors of the optimum
configurations found using the one-step optimization framework
presented in Sec. II. These result are obtainedwith PSO optimization
method with a population size of five particles. The starting design
point and some of the side constraints characterizing the boundaries
of the DVs are different and account for the different optimum
designs reached.

Figures 14 and 15 show the internal topology of the optimized
rectangular wing box. The two topologies are completely different
from one another and yet their weights are in the same range. The
advantage of having such different structures with similar buckling
and weight properties is clear if we consider the fact that the

Table 9 Optimal design thicknesses for the rectangular wing

Uniform
distribution

Nonuniform
distribution

Baseline

Upper-skin thickness, in. 0.015 0.032 0.06
Lower-skin thickness, in. 0.015 0.015 0.06
Spar thickness, in. 0.036 0.015 0.04
Rib thickness, in. 0.015 0.015 0.04

Table 10 DV results for the rectangularwing optimized

using curvilinear SpaRibs and one-step optimization
framework: case I

Design variable Optimized Baseline

Upper-skin thickness, in. 0.038 0.06
Lower-skin thickness, in. 0.040 0.06
Spar thickness, in. 0.015 0.04
Rib thickness, in. 0.015 0.04
Spar start-point x coordinate, in. 1.871 2.5
Spar control-point x coordinate, in. 0.142 2.5
Spar control-point y coordinate, in. 3.519 7.5
Spar endpoint x coordinate, in. �2:000 2.5
Spar distance, in. 4.2065 5.0
Rib start-point y coordinate, in. �0:870 1.85
Rib control-point x coordinate, in. 21.331 15.0
Rib control-point y coordinate, in. 1.026 1.85
Rib endpoint y coordinate, in. �1:545 1.85
Rib distance, in. 2.000 11.3
Responses
W, lb 4.62 5.91
BF0 0.699 0.587
KSC� 0.284 N/A

Table 11 DV results for the rectangularwing optimized
using curvilinear SpaRibs and one-step optimization

framework: case II

Design variable Optimized Baseline

Upper-skin thickness, in. 0.034 0.06
Lower-skin thickness, in. 0.037 0.06
Spar thickness, in. 0.019 0.04
Rib thickness, in. 0.015 0.04
Spar start-point x coordinate, in. 5.000 2.5
Spar control-point x coordinate, in. 1.500 2.5
Spar control-point y coordinate, in. 5.434 7.5
Spar endpoint x coordinate, in. 4.612 2.5
Spar distance, in. 2.500 5.0
Rib start-point y coordinate, in. 3.422 1.85
Rib control-point x coordinate, in. 12.000 15.0
Rib control-point y coordinate, in. 3.579 1.85
Rib endpoint y coordinate, in. 12.500 1.85
Rib distance, in. 5.478 11.3
Responses
W, lb 4.19 5.91
BF0 0.752 0.587
KSC� 0.284 N/A

Fig. 14 Internal structure of rectangular wing optimized using

curvilinear SpaRibs and one-step optimization: case I.

Fig. 15 Internal structure of rectangular wing optimized using

curvilinear SpaRibs and one-step optimization: case II.
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deformation and the mode shapes and frequencies of these structures
are different, leading to different dynamic and aeroelastic behaviors.

The optimized structures designed using one-step-framework
optimization are certainly not optimal solutions from the weight
point of view. Indeed, the bigrid optimal designs found are 22 to 38%
lighter than the curvilinear SpaRibs optima. In an attempt to design a
better structure, the two-step optimization framework was applied,
and Table 12 and Fig. 16 show, respectively, the DV vector and the
internal topology of the optimum design. This structure is different
from the two mentioned above. Moreover, the weight of the wing is
3.22 lb and is the minimum found so far for this structure (Table 13).

Table 13 summarizes the curvilinear SpaRibs optima found for the
rectangular wing box. The best configuration is the one obtainedwith
the two-step optimization framework, and although the CPU time is
slightly higher for this analysis than for the one-step optimization
analysis cases, we believe this is a fair tradeoff to reach a better
design.

The von Mises stress distribution and the buckling fundamental
eigenvalue are plotted in Fig. 17 for the baseline configuration and

the three optimal designs to note the differences in the load-carrying
and static instability capabilities. In particular, the buckling
fundamental eigenvalue plot shows how the local instability of the
wing skin panels is located in different regions of the wing box for
each configuration. The instability pocket size is reduced in the
optimized configurations, when compared with the baseline, and its
position migrates from the trailing edge toward the center of the
wing.

B. Generic Supersonic Fighter Wing

The rectangular wing-box case was a good start to set in place and
test the optimization framework. However, in reality, more complex
cases, in terms of geometry generation and FE modeling, are
encountered daily by the designers. Amore complex application case
was then required. ZONA Technology, Inc., provided us with the
geometry and internal configuration of a generic supersonic fighter
type of wing, and we were able to apply our framework to this case.
The results are presented in the following.

Thewing planform and the internal topologywith 10 straight spars
and 10 straight ribs are visualized in Figs. 18 and 19. For the lack of
CFD-generated loads, we applied a uniform pressure distribution
corresponding to a wing load of 14.85 psi and load factor of 9. The
material used is aluminum alloy 2124 T851, for which the mechan-
ical properties are listed in Table 5).

To compare the optimization results with the baseline wing, we
first generated an optimum baseline design, optimizing the
thicknesses of the skin panels, the spars, and the ribs of the original
structure without changing its topology. One-step and two-step
frameworks were applied with the PSO optimization method with a
population size of five particles. Figure 20 shows the two optima
found.

The two designs are very similar to each other, with both including
17 spars and four ribs. This is expected, since the optimization
starting point and the DV boundaries are the same in both cases. This
shows the consistency of the two frameworks. The structureweight is
slightly different and, more important, it is reduced if compared with
the weight of the baseline wing (Table 14). Figure 21 shows the
von Mises stress distribution and the buckling mode shape for the
baseline wing and the two optimized configurations. The instability
pocket has approximately the same size and position for the three
designs presented. The wing stiffness improvement is due solely to
the buckling mode shape changes driven by the curvilinear SpaRibs

The last result we want to present is a one-step optimization
analysis carried out using PSOwith a population size of 20 particles.
The population size is a critical parameter for PSO [36,38,39], and
we wanted to investigate the impact of changing the number of
particles in the swarm. A large swarm is usually preferred to a small
swarm; however, using too many particles can quickly degrade the
performance in terms of the TCPU. In other words, a small loss in the
accuracy of the optimum design may be preferred to a significantly
more time-consuming optimization with a large swarm. Table 15
shows the result for this case compared with the one-step opti-
mization with PSO and five particles in the swarm.

Clearly, in this case there is no advantage in using a larger swarm
of particles, since we found an optimum design slightly better than
the previous (and yet, not a better one than the two-step optimization
optimum), but usingmore than 16 times the computational resources.

Table 12 DV results for the rectangular wing optimized using

curvilinear SpaRibs and two-step optimization framework

Design variable Optimized Baseline

Upper-skin thickness, in. 0.033 0.06
Lower-skin thickness, in. 0.015 0.06
Spar thickness, in. 0.037 0.04
Rib thickness, in. 0.036 0.04
Spar start-point x coordinate, in. 8.000 2.5
Spar control-point x coordinate, in. 3.000 2.5
Spar control-point y coordinate, in. 5.000 7.5
Spar endpoint x coordinate, in. 1.006 2.5
Spar distance, in. 3.000 5.0
Rib start-point y coordinate, in. 2.053 1.85
Rib control-point x coordinate, in. 20.000 15.0
Rib control-point y coordinate, in. 2.000 1.85
Rib endpoint y coordinate, in. 2.470 1.85
Rib distance, in. 3.000 11.3
Responses
W, lb 3.22 5.91
BF0 0.752 0.587
KSC� N/A N/A

Fig. 16 Internal structure of rectangular wing optimized using

curvilinear SpaRibs and two-step optimization.

Table 13 W, BF0,KSC� , niter, and TCPU for the baseline

and the three optimum wing configurations found

Baseline One-step case I One-step case II Two-step case

W lb 5.91 4.62 4.19 3.22
BF0

a 0.591 0.699 0.752 0.752
KSC� N/A 0.284 0.233 N/A
niter N/A 1000 1465 903
TCPU N/A 8 h 8 h 9 h

a.A safety factor of 1.33 was used for the formulation of the buckling-factor
constraint.
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VI. Conclusions

In this paper a new optimization schema was presented that
includes topology and sizing optimization, carried out together or
separately. The method has proven to be effective, efficient, and
consistent for finding optimal designs of winglike structures char-
acterized by the use of SpaRibs. In both the example cases
considered, we were able to find lighter airframe designs using
curvilinear SpaRibs, as compared with the classical designs with
straight spars and ribs.

This work has to be integrated with a much larger frame in which
the design of a structure is carried out in a collaborative and in a
synergetic way by taking into account all disciplines involved with
their respective objective functions and constraint. This paper is the
first step toward this design philosophy. The future actions to be
taken are essentially directed toward two objectives. The first
objective is to keep improving the geometry generation and the

Fig. 17 Von Mises stress distribution and buckling fundamental eigenvalue for the rectangular wing-box optimization with curvilinear SpaRibs. The

baseline structure is compared with the optimized configurations.

Fig. 18 Generic supersonic fighter wing planform provided by ZONA Technology, Inc.

Fig. 19 Generic supersonic fighter wing geometry and internal

topology provided by ZONA Technology, Inc.
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remeshing tool to reach the ability to automatically regenerate very
complex structures and FEmodels. This has to be done by keeping in
mind the requirements of the optimizer, which ultimately drives the
parameterization of the structure. An example is shown in Fig. 22,
where the parameterization of the SpaRibs has been changed to a
higher-order B-spline curve. The second objective, probably the
more challenging, is to integrate new disciplines such as CFD
analysis, thermal analysis, flutter and dynamics analysis, etc., in the
current framework, which means being able to efficiently integrate

Fig. 20 Generic supersonic fighter wing geometry optimal configurations: a) one-step optimum and b) two-step optimum.

Fig. 21 Generic supersonic fighter wing stress distribution and buckling mode shape. The baseline structure is compared with the two optimized

configurations.

Table 14 W, BF0, KSC� , niter, and TCPU for

the three optima wing configurations found
compared with the baseline structure

Baseline One-step case Two-step case

W lb 399.4 346.0 323.9
BF0 0.752 0.752 0.752
KSC� N/A 0.969 1.0
niter N/A 435 632
TCPU N/A 5 h 8 h
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different software packages that use different formats of inputs and
outputs.
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An algorithm that integrates Karhunen-Loeve expansion (KLE), nonlinear finite element method (NFEM), and a

sampling technique to quantify the uncertainty is proposed to carry out random vibration analysis of a structure with

geometric nonlinearity under correlatednonstationary randomexcitations. InKLE, the eigenvalues and eigenfunctions

of the autocovariance are obtained by using orthogonal basis functions, and theKLE for correlated random excitations

relies on expansions in terms of correlated sets of random variables. The autocovariance functions of excitation are

discretized into a series of correlated excitations, and then the structural response is carried out by using NFEM and

sampling techniques. The proposed algorithm is applied to both rigid and flexible aircraft wings. Two different types of

the boundary condition are studied for the flexible wing: fixed and large mass method (LMM). Results show that the

geometric nonlinearity has a stiffening effect on the behavior of the aircraft wing, resulting in an oscillatory response

with a lower amplitude, and changes the distribution of the random responses. The response due to LMM boundary

condition that is closer to the actual conditions is smaller than the response obtained using fixed boundary condition.

Nomenclature

A = load application area
B = turbulence length scale
C = damping matrix
CFiFi

= autocovariance of the excitation
CFiFj

= cross-covariance of the excitation
c, α, β = parameters of nonstationary gust

d�i�jk = participation factor of h�i�j basis function for ϕ�i�
k

eigenvector
F�t;ω� = distributed forcing excitation
f�t;ω� = discrete forcing excitation
G�t� = zero stationary Gaussian random process
H�x� = nonlinear stiffness matrix

h�i�j = Karhunen-Loeve basis function

K = stiffness matrix

k�ij�km = correlation of the random variables

l1, l2 = spatial correlation parameter
M = mass matrix
N = shape function of system

NE = element number
P = correlation matrix
RXiXi

= autocovariance of the response
S = wing area
SFiFi

= power spectral density function of the excitation
T = transfer matrix that forms element coordinates to

global coordinates
U = velocity of aircraft
V = velocity of wing
W = velocity of gust
x = displacement
yi = the bound of a subdomain of aircraft
γ = eigenvalues of the correlation matrix P
γ1, γ2 = decay rates in the streamwise and spanwise directions
ζ = a vector of independent standard Gaussian random

variables
λ�i�k = eigenvalues of the autocovariance function

μ�i�F = mean values of the random processes fi�t;ω�
ζ1, ζ2 = separation distances in the streamwise and spanwise

directions
ξ�i�k = sets of correlated random variables
ρ = density of air
σXiXi

= standard deviation of the displacement
τi, τij = autocorrelation length and cross-correlation length
φ = eigenvectors of the correlation matrix P

ϕ�i�
k = eigenvectors of the autocovariance function

ω = sample space in the frequency

I. Introduction

M ANYengineering structures are subjected to random dynamic
excitations that might be uncorrelated or correlated in time

and/or in space. Random excitations, which lack a deterministic
definition in time and/or space, often occurs in many real-life
vibration problems, for example, gust loads on aircraft wings,
excitations caused by turbulent boundary layers on panels, and
nonstationary wind and seismic loads on civil structures. The
correlated random processes are often simplified to be stationary,
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Gaussian, and uncorrelated processes for the convenience of a random
vibration analysis. However, many engineering structures encounter
nonstationary and correlated random excitations.
Most of the previous studies on random vibration were confined

to linear systems that are restricted to small deformations where
geometric nonlinearities were not considered for larger complex
systems [1]. It is necessary to consider geometric nonlinear effects to
get the realistic behavior of the structures where large deformation
occurs. For flexible structures such as aircraft, satellites, bridges, and
tall/slender structures, the large out-of-plane deformation results in the
presence of in-plane stretching.Hence, nonlinearitiesmay significantly
change the dynamic structural response behavior. Moreover, nonlinear
random vibration analysis has been drawing increasing attention in
recent years to designmany civil,mechanical, and aerospace structures
[2].However, nonlinear randomvibration analysis under nonstationary
correlated random processes has not been studied in great depth. The
nonlinear random vibration analysis is conducted by analytical and
numericalmethods [3].Analyticalmethodshave been used to carry out
the nonlinear random vibration analysis under nonstationary random
excitations [4–6] for simple systems. For large complex systems,
the development of nonlinear random vibration analysis under
nonstationary correlated excitations is inhibited by both the extensive
computational cost and the inherentmathematical intricacies.With the
relentless progress in high-performance computing, computational
methods are being increasingly used to perform nonlinear random
vibration analyses [7].
Random processes can be described using covariance functions,

and the power spectral density (PSD) functions in time and frequency
domain, respectively. For stationary processes, PSD functions
are usually adopted to define the random processes [8–10]. For
nonstationary processes, marginal probability density functions
(PDF) of the excitation may only have positive real domains that
might be bounded. Therefore, the covariance functions are used to
represent the random processes in the time domain. For most of
the random vibration analysis, it is necessary to decompose the
continuous random processes of excitation when autocovariance
functions are used to define the random excitations [11]. Efforts have
been made to decompose the autocovariance by using Karhunen-
Loeve expansion (KLE) [12], and polynomial chaos expansion [13].
The KLE is a useful and efficient tool for discretizing second-order
random processes with known covariance function. However, the
efficiency and accuracy of KLE for discretizing random processes
highly depends on the accurate eigenvalues and eigenfunctions of the
autocovariance functions [14]. An algorithm using decomposition
using orthogonal polynomials to represent the autocovariance function
has been proposed [1,15,16]. However, it often yields negative
eigenvalues based upon the selection of the type of basis functions.
Therefore, it is critical to select a suitable set of basis functions inKLE.
In the authors’ previouswork [17,18], two different basis functions for
KLE have been chosen: the global trigonometric basis functions and
the piecewise linear basis functions. The piecewise basis functions are
efficient and do not yield negative and/or infinite eigenvalues for the
autocovariance function.
If random processes are uncorrelated, then each of the random

processes can be constructed separately by using KLE [19].
However, if the randomprocesses are correlated in time and/or spatial
domains, then the random processes cannot be straightforwardly
expanded separately. Thus, it is necessary to develop appropriate
methods to effectively simulate the correlated random processes.
The probabilistic principal component analysis [20,21] has been
proposed to represent the correlated processes, which expands the
correlated random processes in terms of a linear combination of
independent random variables. In this method, all of the random
variables representing the random processes are assumed to be
independent; therefore it cannot properly represent cross-correlated
random processes [22,23]. Another technique that has been proposed
to represent correlated nonstationary processes is the spectral density
method [24,25]. This method provides good results in capturing the
autopower spectral density and the cross-power spectral density [26].
However, it is limited to stationary random processes, and only
spatial correlation of random processes can be considered. An

algorithm that relies on expansions in terms of correlated sets of
random variables reflecting the cross-covariance structure of the
processes has also been proposed [23].
A linear nonstationary random vibration analysis of the complex

system for uncorrelated and correlated random processes has been
conducted in authors’ previousworks [1,17,18]. To develop amethod
suitable for nonlinear random vibration analysis under nonstationary
random excitation, with correlation in both time and space,
an algorithm that integrates Karhunen-Loeve expansion (KLE),
nonlinear finite element method (NFEM), and a sampling technique
for performing Monte-Carlo simulation is proposed. The outline of
this work is as follows: in Sec. II, the theory of Karhunen-Loeve
expansion for correlated random processes is addressed. Then an
algorithm is proposed for nonlinear random vibration analysis of
complex structures under multicorrelated random excitations. In
Secs. III and IV, the proposed methodology algorithm is applied to
rigid and flexible aircraft wings subjected to both stationary and
nonstationary correlated excitations. Finally, conclusions are drawn
in the last section.

II. Nonstationary Random Vibration Analysis of
Systems with Geometric Nonlinearity

A. Karhunen-Loeve Expansion for Multiple Correlated Processes

A time-invariant second-order systemwith geometric nonlinearity
subjected to a forcing function can be written as:

M �x� C _x� Kx�H�x�x � f�t;ω� (1)

whereM and C are mass and damping matrix of the system,K is the
linear elastic stiffness matrix,H�x� is the generalized unsymmetrical
nonlinear stiffness matrix, f�t;ω� are the individual excitation
component function of random forces whose components are
fi�t;ω�, and ω is the sample space of the random excitations.
Typically, long-aspect-ratio beams and wings excited by gust can be
represented by Eq. (1). If the excitations are the distributed random
forces F�t;ω�, then the distributed forces can be converted into
discrete forces f�t;ω� as [27,28]:

f�t;ω� �
XNE
j�1

T

Z
A
NF�t;ω� dA (2)

where, NE is the element number, T is the transfer matrix that
transforms element coordinates to global coordinates, N is the
shape functions of the system, A is the area over which the force is
applied.
In many engineering problems, the material properties and/or

forces are described as random quantities, and they are also functions
of time or spatial dimensions. In this case, it is necessary to consider
joint probability density functions for the material properties and/or
forces. Nevertheless, this description becomes cumbersomewhen the
responses of the system are calculated using the joint distribution
of many random variables. Hence, it is advantageous to study the
interaction among multiple random processes and extract as much
information as possible from that relationship [8]. The relationship
among multirandom variables is achieved through covariance and
correlation analysis. Here, the forcing function fi�t;ω� is prescribed
by their autocovariance functions and mean values, which can range
from a stationary to a nonstationary process, a Gaussian to a non-
Gaussian process, a narrowband random process to a broadband one.
Let us consider an ensemble of square integrable randomprocesses

fi�t;ω�. The covariance of random processes, fi�s;ω� and fj�t;ω�
with mean values μi and μj, is given as:

CFiFj
�s; t� � E��fi�s;ω� − μi��fj�t;ω� − μj�� (3)

where E�� denotes the statistical expectation operator. If a process
f�i �t;ω� is substituted for fj�t;ω� in Eq. (3), where f�i �t;ω� is simply
a time-shifted version of fi�s;ω�, then Eq. (3) is known as
autocovariance CFiFi

�s; t�.

2 Article in Advance / LI ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

L
A

B
A

M
A

 o
n 

O
ct

ob
er

 2
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

47
21

 



The KLE provides a way to discretize the autocovariance function
of excitation such that it can be used to carry out the random vibration
analysis [29]. If the random processes fi�t;ω� are uncorrelated,
then the KLE can be applied to each process that can be constructed
separately [19]. However, if the random processes fi�t;ω� are
correlated, that is, if the cross-covariance functions are nonzero, then
the random processes cannot be straightforwardly expanded into
consistent expansions. Using KLE, the correlated random processes
is written as a combination of the mean forcing component and the
random orthogonal components:

fi�t;ω� � μ�i�F �t� �
Xn
k�1

�������
λ�i�k

q
ϕ�i�
k �t�ξ�i�k �ω� (4)

where λ�i�k and ϕ�i�
k �t� are, respectively, the eigenvalues and

corresponding eigenfunctions of the autocovariance function

CFiFi
�s; t�; ξ�i�k �ω� represent sets of correlated random variables,

which will be discussed in Sec. II.B; and n is the truncated number of
KLE terms and strongly depends on the desired accuracy and the
autocovariance functionof the stochastic field.Because the eigenvalues

λ�i�k decay monotonically with increasing values of its index, an

appropriate measure of KLE truncation error is given as [23]:

err �
 XN

k�1

λk −
Xn
k�1

λk

!,XN
k�1

λk N > n (5)

The eigenvalues λ�i�k and corresponding eigenfunctionsϕ�i�
k �t� of the

autocovariance function are found by solving a Fredholm equation of
the second kind [29]:Z

tmax

tmin

CFiFi
�t1; t2�ϕ�i�

k �t1� dt1 � λ�i�k ϕ�i�
k �t2� (6)

where tmin and tmax are the initial and final times.
Here, sets of orthogonal basis functions are employed to solve the

Eq. (6). The eigenfunctions ϕ�i�
k �t� can be further expanded as:

ϕ�i�
k �t� �

Xn
j�1

d�i�jk h
�i�
j �t� (7)

where d�i�jk are basis function participation factors and h�i�j �t� are
user-defined basis functions. From our previous research [1,17,18]
experience, simple piecewise constants are adopted as the basis
functions.
The result of solving Eq. (6) using user-defined basis functions is a

classical matrix eigenvalue problem, as shown in Eq. (8).

GD � ΛQD (8)

where

Gij �
Z

tmax

tmin

Z
tmax

tmin

CFiFi
�t1; t2�hi�t2�hj�t1� dt1 dt2 (9)

Qij �
Z

tmax

tmin

hi�t�hj�t� dt (10)

Λ�i�
km � δkmλ

�i�
k (11)

Construction of the N matrix is very similar to that for a typical
Galerkin-type problem. Once the eigensystem of Eq. (8) is solved,
the eigenfunctions must be scaled appropriately. The MATLAB
eigensystem solver typically scales the eigenvectors such that their
L2 norm is equal to unity. While this is appropriate for many
applications, it is not, in this case, as themagnitude of the eigenvector
plays an integral role in the calculation of the response using
KLE [30]. An appropriate way of scaling can be obtained by making
use of the Fredholm Eq. (6). The computed eigenvalues λ�i�k and

eigenfunctions ϕ�i�
k �t� are substituted back into the Fredholm equation

and compare the values for the left- and right-hand side of the Eq. (6).

Then, a scaling factor can be found using this method, which is then

applied to the eigenvector under study. The left- and right-hand side

of the Fredholm equation is checked once more with the scaled

eigenvalues and eigenfunctions to ensure that a correct scaling factor

has been used.

B. Correlated Random Variables for Multicorrelated Processes

By definition, the correlation of random variables shown in Eq. (4)

are as follows:

P�ij�
km � E

h
ξ�i�k ξ�j�m

i
(12)

If the random processes are correlated only in the time domain, the

cross-covariance functions only depend on time parameters s and t. If
the random processes have a correlation in both time and space

domain, the cross-covariance functions depend on not only the time

parameters s and t but also spatial parameters l1 and l2. When using

the definition of correlation in Eq. (12) and the KLE, the cross-

covariance functions can be obtained for the zero mean random

variables as follows:

CFiFj
�s; t; l1; l2� � E�fi�s;ω�fj�t;ω��

�
Xn
k�1

Xn
m�1

P�ij�
km �l1; l2�

��������������
λ�i�k λ�j�m

q
ϕ�i�
k �s�ϕ�j�

m �t� (13)

The correlation of random variables P�ij�
km in Eq. (12) can be

determinedbyprojecting thekernelsCFiFj
�s; t�onto the eigenfunction

set of each random process, which yields [23,31]:

P�ij�
km �l1; l2� �

1��������������
λ�i�k λ�j�m

q Z
T

0

Z
T

0

CFiFj
�s; t; l1; l2�ϕ�i�

k ϕ�j�
m ds dt (14)

Let P be the block matrix

P �

2
666664

I P12 · · · P1n

P21 I · · · P2n

..

. ..
. . .

. ..
.

Pn1 Pn2 ..
.

I

3
777775 (15)

where I is the identity matrix andPij is the matrix defined in Eq. (14).

Note thatP is asymmetric andmay not be necessarily positive definite.
The correlated random variables ξ�i�k �ω� in Eq. (4) can be obtained

from a transformation of uncorrelated random variables. Let

ξ�i�k �

2
666666664

n
ξ�1�k �ω�

o
n
ξ�2�k �ω�

o
..
.n

ξ�n�k �ω�
o

3
777777775

(16)

be a jointly normally distributed random vector with correlation

matrix P and can be obtained as follows [23]:

ξ � φζ
���
γ

p
(17)

where ζ is a vector of independent standard Gaussian random

variables with a mean value equal to zero and a variance equal to one,

which can be obtained by using Latin Hypercube Sampling (LHS).

Here, φ and γ are eigenvalues and eigenvectors of the correlation

matrix P.
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C. Response of System with Geometric Nonlinearity Under
Multicorrelated Random Excitations

Using the definition of KLE of the forcing function as given in

Eq. (4), Eq. (1) is written as:

M �x� C _x� Kx�H�x�x � μF�t� �
Xn
k�1

�����
λk

p
ϕk�t�ξk�ω� (18)

The response of the system xi�t� with geometric nonlinearity due

to correlated random processes fi�t;ω� can be obtained by using a

sampling technique and nonlinear finite element method, which is a

more generic approach for large and complex systems as compared

with the analytical approach. First, the correlated excitations are

obtained by using sampling techniques. Then the nonlinear analysis

due to the correlated excitations is carried out by using MSC.

NASTRAN solution 400 or 600. MSC.NASTRAN implements the

nonlinear analysis by offering several stiffness update strategies,

such as full Newton-Raphson, modified Newton-Raphson, strain

correction method, and a Secant procedure [32]. The full Newton-

Raphson method updates the tangent stiffness matrix once per

increment, which provides excellent results for most nonlinear

problems. The modified Newton-Raphson method is similar to the

full Newton-Raphson method but does not formulate and factor the

tangent stiffness matrix in each iteration. The strain correction

method is a variant of the full Newton method, which uses a

linearized strain calculation, with the nonlinear portion of the strain

increment applied as an initial strain increment in subsequent

iterations and recycles. This method is appropriate for shell, plate,

and beam problems in which rotations are large, but membrane

stresses are small. The Secant method is based on the Davidon-rank

one, quasi-Newton update. The Secant method is similar to the

modified Newton-Raphson method in that the stiffness matrix is

calculated only once per increment. In this research, the full Newton-

Raphson was selected in MSC.NASTRAN solution sequence SOL

400 to solve the geometric nonlinear problem.
Then the autocovariance RXiXi

�t1; t2� and variance σ2XiXi
�t� of the

response are represented as:

RXiXi
�t1; t2� � E�xi�t1�; xi�t2�� (19)

σ2XiXi
�t� � E�xi�t�; xi�t�� (20)

D. Implementation Procedure for Random Vibration Analysis

An algorithm is proposed to carry out nonstationary random

vibration analysis of the systems with geometric nonlinearity under

multiple random excitations that are correlated both in time and

space. The implementation procedure is as follows:
1) Define the geometry and material properties of the structure.
2) Define or obtain the autocovariance function CFiFi

and cross-
covariance function CFiFj

of excitation.
3) Choose the piecewise constant function as the basis function, and

then the eigenvalues λ�i�k and eigenfunctions ϕ�i�
k of autocovariance

function CFiFi
are obtained by solving a Fredholm equation of the

second kind.
4) Correlation matrix P of random processes is calculated by

Eqs. (14) and (15), and then the eigenvalues γi and eigenvectors φi

of correlation matrix P are obtained.
5) The correlated random variables ξ�i�k are obtained by Eq. (17).
6) Using the eigenvalues λ�i�k and eigenfunctions ϕ�i�

k of
autocovariance function in Step 3 and the correlated random

variables ξ�i�k in Step 5, the correlated random excitations fj�t;ω�
are obtained by KLE.
7) Create the finite element model of structure, and the correlated

excitations fj�t;ω� are applied.
8) The nonlinear response analysis is carried out by using

nonlinear finite element method and sampling technique.

III. Application to a Rigid Aircraft Wing

To verify the accuracy of the proposed algorithm under correlated

nonstationary excitation, the method is applied to an aircraft wing

that is simplified as a rigid system where the effect of the mass of the

aircraft and aerodynamics due to gust are considered. The effect of

the flexibility of the structures is ignored to derive the approximate

acceleration and vertical velocities of thewing due to the gust. But the

effect of spatial distribution (in the plane of the wing) of the vertical

gust is accounted for the rigid wing. Such simplifications are

commonly made at the preliminary design stage even for large flight

vehicles. Traditionally, the rigid-wing ismodeled as a 2-D airfoil, and

hence the cross-correlation effects of the excitations are neglected.

The nonstationary analysis of a wing as a rigid 2-D plane element

will verify the applicability of the proposed methodology with the

analytical results published earlier [33,34] along with studying the

effects of cross-correlation effects of the excitations. The plunging

rigid body motion of the rigid aircraft wing is only considered, and

the effect of geometric nonlinearity cannot be taken into account in

this case. The rigid aircraft wing model is shown in Fig. 1 and the

dimensions and physical properties are given in Table 1. Here, the

response of the wing as the free-free structure is studied.

Vibration generated by gust excitation has been and continue to be

of interest in the design of aircraft [35,36]. In this work, the excitation

is due to the gust caused by the differential heating of the earth’s

atmosphere by the Sun [37]. Gust loads are a great concern to an

aircraft designer because of gusts’ influence on the ride quality,

safety, and for the long-term due to the fatigue life of the aircraft and

in view of the control upset problem on the safety. It has been verified

experimentally [33] that the gust velocity is approximately Gaussian

distributed. However, strong nonstationary characteristics are also

evident in some cases, especially, for low-altitude turbulence over

rough terrain. Thus, random vibration analyses of the rigid aircraft

wing excited by stationary and nonstationary gusts are carried out.

Here, the gust only in the vertical direction is considered.

A. Stationary Random Excitation

For the stationary gust excitation, significant research has been

conducted previously to describe the characteristics of the gust. The

Dryden model is one of most representative models that describe the

stationary gust random excitation. The expression for the power

spectral density (PSD) function of the gust velocity is given as [33]:

a) Top view

b) Side view

Fig. 1 The rigid aircraft wing excited by gust.
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SFiFi
�ω� � σ2B

2πU

�
1� �3ωB∕U�2
�1� �ωB∕U�2�2

�
(21)

where σ2 represents the variance of the gust velocity, B is the

turbulence length scale, and U is the aircraft speed. Then an

approximate autocovariance of the gust can be obtained by a transfer

function representation of theDryden PSD function as in Eq. (22) and

is shown in Fig. 2.

CFiFi
�t1; t2� � σ2i

�
1 −

jt1 − t2j
2τi

�
exp

�
−
jt1 − t2j

τi

�
(22)

where τi represents the autocorrelation length, and τi � B∕U.
As the gust excitations are correlated both in time and space, the

gust profiles along the streamwise and spanwise directions are

assumed to be of the form of an exponential correlation. Then, the

cross-covariance of the gust is obtained as follows:

CFiFj
�ζ1; ζ2; t1; t2� �

σ2i
τij

�
1 −

jt1 − t2j
2τij

�
exp

�
−
jt1 − t2j

τij

�

× exp

�
−γ1

���� ζ1U
����
�
exp

�
−γ2

���� ζ2U
����
�

(23)

where ζ1 and ζ2 are the separation distances in the streamwise and

spanwise directions, γ1 and γ2 are the decay rates, and τij is the

cross-correlation length.
According to the KLE of the gust autocovariance, the gust velocity

W�t� can be first obtained. Then the vertical velocity V�t� and

acceleration _V�t� of the rigidwing as shown in Fig. 1 can be calculated
by using the quasi-steady state aerodynamics theory as follows [37]:

_V�t� � aV�t� � −aW�t� (24)

wherea � ρUS�dCL∕dα�∕2M is themass parameter of the aircraft, ρ
is the density of air, S is the area of the wing,M is the half mass of the

aircraft, and dCL∕dα is the lift curve slope. The pressure applied to

wing due to gust can be obtained by using Eq. (24) as follows:

P�t� � 1

2
ρU

dCL

dα
�W�t� � V�t�� (25)

The parameters of the stationary gust excitation used in this
manuscript are taken from [37] and given in Table 2.
The standard deviations of vertical velocity and acceleration are

obtained by the proposed method and compared with the analytical
results given by Lee [34] as shown in Fig. 3. The results obtained by
proposed method have an excellent agreement with the analytical
results, which means that the proposed algorithm and the obtained
results are feasible, correct, and valid.
For the random vibration analysis, the amount of computing data

would become very significant if we consider correlation in both the
time and space domains. Therefore, to capture the spatial correlation
efficiently, the wing is divided into several subdomains, as shown in
Fig. 1; for example, xl, xu, yl, and yu are the bounds of a subdomain.
Subscripts l and u on x and y are used for the lower and upper bounds
in the x and y directions, respectively. However, the process of
partitioning the domain cannot be completely arbitrary. The division
of subdomains must be fine enough to obtain accurate results. To
find an optimal number of subdomains, the wing is divided into
different subdomains, varying from 1 × 1 to 6 × 3 grid. The standard
deviations of the velocities with different subdomains are shown in
Fig. 4. Results show that the standard deviations of the velocity of the
wing converge to a relatively stable value with an increase in the
numberof subdomains.Therefore, the number6 × 3grid isdetermined
to be sufficient for the random vibration analysis.
The effect of correlation among random excitations on the

structural response is also studied. The structural responses are
calculated using three different excitations: 1) perfectly correlated
excitations where the correlation between the random processes is
one, 2) uncorrelated excitations where the correlation between the
random processes is zero, and 3) partially correlated excitations

Fig. 2 Autocovariance function of stationary gust excitation.

Table 1 Rigid aircraft wing
dimensions and physical properties

Parameters Values

Full span 50 m
Aspect ratio 5
Mass parameter (a) 1.12
Lift curve slope 2π

Table 2 Numerical values of the
parameters used in the gust model

Parameters Values

Aircraft velocity (U) 60.96 m∕s
Turbulence length scale (B) 152.4 m
Density of air (ρ) 1.21 kg∕m3

Decay rate, streamwise (γ1) 0.16
Decay rate, spanwise (γ2) 0.46
Variance of the gust velocity (σ2i ) 0.81 m2∕s2
Autocorrelation length (τi) 2.5
Cross-correlation length (τii) 2.5
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Fig. 3 Results using analytical and proposed method under stationary
excitation.
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where the correlation between the random processes is defined by
Eq. (14). The standard deviations of the velocity and acceleration
with different correlations are obtained and shown in Fig. 5. The
corresponding covariances of the velocity and acceleration under
partially correlated excitation are presented in Fig. 6. Results indicate
that the response due to partially correlated random excitation is
bounded by the responses obtained by perfectly correlated and
uncorrelated random process excitations. The changes of response

may be attributable to the phase difference between different

excitation locations of the system. The additional effect produced by

phase difference is ignored in the uncorrelated case. When the

excitations are treated as perfectly correlated, the response increases

due to some overlap of excitation that is caused by correlation.

B. Nonstationary Random Excitation

The nonstationary character of the gust has led to an increasing use

of nonstationary models in performing response analysis of aircraft

due to gusts. A convenient and realistic way of representing the

nonstationary character of the gust velocity is to model it in a

uniformly modulated form given by:

W�t� � r�t�G�t� (26)

where G�t� is a zero-mean stationary Gaussian random process and

r�t� is a deterministic function of time. Howell and Lin [33] assumed

the modulating function r�t� to be of the form:

r�t� � c�e−αt − e−βt� (27)

where β > α > 0 and c > 0. The α, β, and c are constant and can be
selected so as to make the resulting profile to resemble rather well

with the atmosphere gust profile.
Equation (26) can be further expressed into a Fourier Stieltjes

integral as:

W�t� �
Z

∞

−∞
r�t�eiωt d ~G�ω� (28)
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Fig. 4 Results with different number of subdomains under partially
correlated stationary excitation.

Fig. 6 Results under partially correlated stationary excitation.

a) Standard deviations of the velocity b) Standard deviations of the acceleration
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Fig. 5 Results under perfectly correlated, uncorrelated, and partially correlated stationary excitations.
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where ~G�ω� is an orthogonal random process with [37]:

E
h
d ~G�ω1�d ~G�ω2�

i
� 0 ω1 ≠ ω2

E
h
jd ~G�ω�j2

i
� SFiFi

�ω�dω ω1 � ω2 (29)

Then the autocovariance function of the gust can be obtained using
the evolutionary spectral analysis as:

CFiFi
�t1; t2� �

Z
∞

−∞
r�t1�r�t2�eiω�t1−t2�SFiFi

�ω� dω (30)

Substituting Eqs. (21) and (27) into Eq. (30), the autocovariance of
the nonstationary gust is derived as follows:

CFiFi
�t1; t2� � c2σ2ij

h
e−α�t1�t2� � e−β�t1�t2� − e−αt1−βt2 − e−βt1−αt2

i
×
�
1 −

jt1 − t2j
2τij

�
exp

�
−
jt1 − t2j

τij

�
(31)

Similarly, as is done in the case of stationary covariance excitation,
the correlation of gust along the streamwise and spanwise directions
can be presented as an exponential decaying oscillating function.
Then the cross-covariance of the nonstationary gust is as follows:

CFiFj
�ζ1; ζ2; t1; t2� � CFiFi

�t1; t2� exp
�
−γ1

���� ζ1U
����
�
exp

�
−γ2

���� ζ2U
����
�

(32)

The parameters of the nonstationary gust excitation used in this
paper are given in Table 2, and the autocovariance of the nonstationary
gust excitation is shown in Fig. 7.
The standard deviations of the acceleration obtained by the

proposed method under nonstationary gust with different values of β
are obtained and compared with the analytical results conducted by
Howell and Lin [33] as shown in Fig. 8. Here, the parameters α and c
are set equal to 0 and 1, respectively. The results obtained by the
proposed method have an excellent agreement with the analytical
results for all values of β. It can also be observed that the structural
responses for all values of β tend to become stationary random
processes with time. It is because the excitation tends to be a
stationary random process with the increase of time. However, in a
stationary analysis, the transient overload is not detected.We can also
see that the responses become more and more pronounced as the
increment of β. The parameter β has a significant effect on the
structural response. Therefore, the parameter β should be set
carefully in an actual situation, and it can usually be obtained through
experiments. The parameter β is set equal to 5 in the following
analysis.

The convergence of the structural responses under nonstationary
gust with a different number of subdomains is also studied, as shown
in Fig. 9. Results indicate that the responses converge to a relatively
stable valuewith the increase of the subdomains’ number. Therefore,
for the nonstationary gust excitation, the number of subpanels (6 × 3)
is also enough and reasonable to carry out the random vibration
analysis. Then the effect of correlation between random excitations
on the structural response is also studied. The standard deviations of
the acceleration with different correlated excitations that are perfectly
correlated, partially correlated, and uncorrelated excitations are shown
in Fig. 10. The corresponding autocovariances of the acceleration
under partially correlated excitation are plotted in Fig. 11. The results
once again verify that the response will be larger for the perfectly
correlated case and smaller for the uncorrelated case than that for the
actual conditions.

IV. Application to a Flexible Aircraft Wing

To further demonstrate the general applicability of the proposed
methodology, a complex structure, a flexible aircraft wing as shown
in Fig. 12 is used in this research. The flexible wing is a subsonic
wing, which is known as the NASA common research model (CRM)
[38]wing. Thewing consists of twowing sections: the innerwing and
the outer wing, which are connected at the junction located at about
37% semispan. The front and the rear spars are located at 9%and 70%

Fig. 7 Nonstationary autocovariance function of gust excitation.
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Fig. 9 Results with different number of subdomains under partially
correlated nonstationary gust.
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of the chord, respectively. The ribs are placed in the region between

the front and rear spars. The wing is modeled using aluminum alloy

2024-T3, and its dimensions and material properties are given in

Table 3.

The FEM of the CRM wing is modeled by using four-noded

quadrilateral elements (CQUAD4 inNastran), as shown in Fig. 12. In

the FEM, it is important to study the convergence to estimate the

number of elements. The wing is modeled by using 4142, 9540, and

31,140 elements, as shown in Table 4. When the number of finite

elements is greater than 9540, converged results can be obtained.

Based on a combination of computational efficiency and sufficient

accuracy, this optimum number 9540 of finite elements is determined

for subsequent analysis. The convergence of the structural response
due to a number of samples is also studied for both stationary and
nonstationary gust. A set of 1000 samples of random variables where
the confidence reaches 98.11% is also sufficient for the random
analysis of the flexible wing.
During the analysis of this wing, the root of the wing is usually

assumed to be fixed as shown in Fig. 13a, and thus only elastic
deformation of the wing is taken into account. In an actual situation,
the response of wing includes both the elastic deformation and rigid
body motion, which can be used for comfort evaluation. In the linear
vibration analysis, the response of the wing can be obtained by a
linear superposition of elastic and rigid body deformations, but it is
not valid in the nonlinear vibration analysis. To get the overall
response, including both the rigid and elastic responses in the
nonlinear analysis, the large mass method (LMM) is employed to
carry out the random vibration analysis. The LMM is a modeling
technique inwhich the user places an element with a largemass at the
points of known acceleration or displacement [39,40]. In effect, this
largemass acts as a constraint at the connected point/location. Then, a
correspondingly large force is applied to the largemass to produce the
desired motion. If the added mass element is sufficiently heavy, the
reaction forces from the actual structure will not affect the input
motions. MSC software recommends that the value of large mass is
approximately 106 times themass of the entire structure. In this work,
the LMM is simulated by attaching a hugemass that is attached to the
wing by using RBE2 elements, as shown in Fig. 13b. The large force
given in Eq. (24) and the pressure given in Eq. (25) are, respectively,
applied to the large mass and the wing skin, and then the nonlinear
response can be obtained by using nonlinear finite element method
(NFEM). The stationary and nonstationary gusts in this section are
same as given in Sec. III. Twopoints,A andB, at the tip and the root of
the wing, respectively, are selected for monitoring the random
vibrations, as marked in Fig. 13.
To capture the spatial correlation of a gust, the wing is divided into

several subdomains, as shown in Fig. 14. The convergence of the
structural response by varying the number of subdomains is studied.
The standard deviations of the acceleration at point A under stationary
and nonstationary gustswith various number of subdomains are shown
inFig. 15. Results show that the number of subpanels (6 × 4) is enough
and reasonable to carry out the random vibration analysis. The
structural responses at point A due to the perfectly correlated, partially
correlated, and uncorrelated stationary and nonstationary excitations
are obtained as shown in Figs. 16 and 17. The standard deviation at the
tip is becoming less oscillatory after 2 s, and the standard deviation of

Fig. 11 Results under partially correlated nonstationary gust.
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Fig. 10 Results under perfectly correlated, uncorrelated, and partially
correlated nonstationary gusts.

Table 3 The dimensions and material
properties of the flexible aircraft wing

Parameters Values

Full span 58.75 m
Aspect ratio 9
Taper ratio 0.275
Density 2768 kg∕m3

Modulus of elasticity 73.09 GPa
Poisson ratio 0.33

Fig. 12 The flexible aircraft wing model.
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displacement is becoming almost linearly increasing due to the
modeling of the wing as a free-free structure will produce a rigid
motion. The same conclusion as obtained in Sec. III is confirmed again
that the structural responses due to correlated random processes are
bounded by the response achieved by both perfectly correlated and
uncorrelated random excitations.
Theoretically, themore samples of randomvariables are used in the

sampling technique, the more accurate results will be obtained. Here,

LHS [41] is used to generate samples. However, the computational
cost will be too high if one uses a large number of samples to carry out
the random vibration analysis, especially for the case of nonlinear
vibration. It is necessary to obtain an optimum number of samples
based on computational efficiency and sufficient accuracy. To find
this optimal number, the stationary and nonstationary nonlinear
randomvibration analyses are carried out by using 200, 400, 600, 800,
and 1000 samples of random variables. The confidence levels with
different values of sampling numbers are shown in Table 5, where the
confidence interval is 95%. Results demonstrate that the confidence
increases with an increase in the number of samples, and it reaches
98.11% when 1000 samples are used. Thus, a set of 1000 samples of
random variables is sufficient for this problem.
To study the effect of geometric nonlinearity on the structural

response, the standard deviations of displacement and acceleration at
point A obtained using nonlinear analysis due to LMM and fixed
boundary conditions are calculated and comparedwith the linear case
results, as shown in Figs. 18 and 19, respectively. Results show
that the geometric nonlinear effect has a hardening effect on this
wing’s response and results in a less oscillatory response amplitude
compared with the linear case. Moreover, the geometric nonlinear
effect results in stiffening of the aircraft wing, which decreases the
wing’s response. This is because a large out-of-plane deformation of
the wing results in in-plane stretching, which in turn leads to a
hardening of thewing. However, it is worth noticing that the effect of
nonlinear stiffnessmatrix is not always stiffening. It may also have an

Table 4 The first 10 natural frequencies of the flexible aircraft wing (Hz)

Number of elements 1 2 3 4 5 6 7 8 9 10

4,142 1.54 5.51 8.91 11.05 11.23 12.60 12.85 13.09 13.65 13.97
9,540 1.27 4.90 8.32 10.36 10.58 11.05 11.44 11.70 12.06 12.18
31,140 1.26 4.87 8.27 10.08 10.31 10.85 11.18 11.56 11.92 12.07

Fig. 13 The fixed and LMM boundary condition of the flexible aircraft wing.

Fig. 14 Subdomains to capture the correlation on an aircraft wing.

a) Results under stationary gust b) Results under non-stationary gust
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Fig. 15 Results with different number of subdomains under stationary and nonstationary gust.
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adverse effect, and it depends on the type of boundary condition, the

magnitude of excitation, and the nature of structural nonlinearity.

To study the nonlinear effect on the PDFs of response, the PDFs of

linear and nonlinear displacements at point A at 1 s and 3 s using

LMM boundary condition are obtained as shown in Fig. 20. All the

PDFs of displacement are Gaussian for the linear system because

the excitations expanded by KLE are Gaussian. However, in the

nonlinear system, the PDFs of displacement are non-Gaussian even if

the excitations are Gaussian. Meanwhile, the PDFs of displacement

change over time, meaning that the distribution of the response is not

a) Standard deviations of the displacement b) Standard deviations of the acceleration

0 1 2 3 4
0

0.5

1.0

1.5

2.0

Time (s)

S
ta

n
d

ar
d

 D
ev

ia
ti

on
 o

f 
th

e 
D

is
p

la
ce

m
en

t 
(m

)

Perfectly Correlated

Uncorrelated

Partially Correlated

0 1 2 3 4
0

30

60

90

120

Time (s)

S
ta

n
d

ar
d

 D
ev

ia
ti

on
 o

f 
th

e 
A

cc
el

er
at

io
n

 (
m

/s
2 )

Perfectly Correlated

Uncorrelated
Partially Correlated

Fig. 16 Results under perfectly correlated, uncorrelated, and partially correlated stationary gust.

a) Standard deviations of the displacement b) Standard deviations of the acceleration

0 1 2 3 4
0

0.5

1.0

1.5

2.0

Time (s)

St
an

da
rd

 D
ev

ia
ti

on
 o

f 
th

e 
D

is
pl

ac
m

en
t 

(m
)

Perfectly Correlated

Uncorrelated

Partially Correlated

0 1 2 3 4
0

20

40

60

80

Time (s)

St
an

da
rd

 D
ev

ia
ti

on
 o

f 
th

e 
A

cc
el

er
at

io
n 

(m
/s

2 )

Perfectly Correlated

Uncorrelated

Partially Correlated

Fig. 17 Results under perfectly correlated, uncorrelated, and partially correlated nonstationary gust.

Table 5 Confidence levels with different
sampling numberswhen confidence interval is 95%

Sampling number Confidence level, %

200 71.73
400 86.58
600 93.21
800 96.45
1000 98.11

a) Standard deviations of the displacement b) Standard deviations of the acceleration
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Fig. 18 Linear and nonlinear responses under stationary gust.

10 Article in Advance / LI ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

L
A

B
A

M
A

 o
n 

O
ct

ob
er

 2
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

47
21

 



fixed for a nonlinear system. Therefore, it is necessary to consider
geometric nonlinearity of the systems while studying the dynamic
vibration analyses; otherwise, it will result in inaccurate results.
To investigate the effect of boundary condition on the structural

response, the random vibration analysis is carried out using two
different boundary conditions: 1) LMM boundary condition and
2) fixed boundary condition. The elastic deformations of the wing in
both LMM and fixed boundary conditions are calculated and
compared. The elastic deformations using LMM boundary condition
can be obtained by subtracting the responses at point B from the
responses at point A, and then compared with the elastic deformations
at point A using fixed boundary condition. In Figs. 21 and 22, the

“A-B” lines, respectively, represent the linear and nonlinear elastic
deformations using LMM boundary condition. Results show that the
elastic deformation usingLMMboundary condition is smaller than the
response obtained using fixed boundary condition. The response due
to gust can be divided into two parts: rigid-bodymotion and the elastic
deformation, which is closer to reality. If the boundary condition of the
aircraft wing is regarded as fixed, the gust only results in the elastic
deformation of the wing. Because of the total potential of excitation,
the response will be larger in fixed boundary condition. It should also
be noticed that the displacement response using LMM boundary
condition does not become stationary after a certain period, instead it
keeps on increasing with the time, as shown in Figs. 18 and 19. This is

a) Standard deviations of the displacement b) Standard deviations of the acceleration
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Fig. 19 Linear and nonlinear responses under nonstationary gust.

a) Results under stationary gust b) Results under non-stationary gust
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Fig. 20 PDFs of displacements under stationary and nonstationary gust.
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Fig. 21 Results by using LMM and fixed boundary conditions under stationary gust.
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because the displacement is stationary for the elastic motion, but it
continuously increases for the rigid motion. Therefore, it is necessary
to model the boundary condition of the wing as an elastic boundary
condition by using LMM boundary condition during the design of
aircraft. Otherwise, it will result in inaccuracies of the structural
response.
The standard deviations of nonlinear displacement and acceleration

at point A using LMM boundary condition under partially correlated
stationary and nonstationary gust are shown as solid line in Figs. 18
and 19. The corresponding autocovariance of displacement and
acceleration at point A are, respectively, plotted in Figs. 23 and 24.
We can also notice that the displacements of rigid motion and the

accelerations of elastic deformation dominate the overall response of
displacement and acceleration of the wing.

V. Conclusions

A methodology is presented wherein Karhunen-Loeve expansion
(KLE), geometric nonlinearity through finite elementmethod (NFEM),
and a sampling technique are combined to carry out nonstationary
randomvibration analysis of complex dynamic systemswithgeometric
nonlinearity where the excitations are correlated random processes
both in time and space domains. The eigenvalues and eigenfunctions of
the autocovariance are obtained by using orthogonal basis functions.

a) Standard deviations of the displacement b) Standard deviations of the acceleration
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Fig. 22 Results by using LMM and fixed boundary conditions under nonstationary gust.

Fig. 23 Autocovariances under partially correlated stationary gust.

Fig. 24 Autocovariances under partially correlated nonstationary gust.
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The KLE for correlated random excitations relies on expansions in
terms of the correlated sets of random variables reflecting the cross-
covariance of the random excitations. The autocovariance functions of
random excitations are discretized into a series of correlated forces that
are applied as excitations, and the structural responses are obtained by
using NFEM and a sampling technique.
The application of the proposed algorithm is first carried out to a

rigid aircraft wing under stationary and nonstationary correlated
gusts. To capture the spatial correlation efficiently, thewing is divided
into several subdomains, and then the number of subdomains is
determined by a convergence study. The response due to correlated
random processes is bounded by the response obtained by perfectly
correlated and uncorrelated random process excitations. Second, the
algorithm is applied to a flexible aircraftwing. The effects of geometric
nonlinearity on the magnitude and distribution of structural response
are carried out. Results show that the geometric nonlinearity has
a hardening effect on the wing response, which suppresses the
oscillatory response, and changes the distribution of the responses into
non-Gaussian although the excitations are Gaussian. Next, two
different types of the boundary conditions of the wing are studied and
results compared: 1) fixed boundary condition and 2) LMM boundary
condition. The response due to LMM boundary condition, which is
closer to reality, is smaller than the response obtained using fixed
boundary condition. The proposed methodology can be applied to the
analysis of any complex structures and any random excitations. This
study will be helpful for the design of aircraft.
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